Smart Predict-and-Optimize for Hard Combinatorial Optimization Problems

Jayanta Mandi,¹Emir Demirović,² Peter. J Stuckey,² Tias Guns¹ ¹ Data Analytics Laboratory, Vrije Universiteit Brussel {jayanta.mandi,tias.guns}@vub.be ² University of Melbourne {emir.demirovic,pstuckey}@unimelb.edu.au

Predict-and-Optimize class of Problems

Parametric Optimization when some optimization parameters are not known at execution time.

Traditional Twostage Approach

End-to-end Training

The downstream optimization is *not* in the model training

Ignores that the impact of prediction errors is *not uniform through*out the underlying solution space

An end-to-end training minimizing a task-loss- a measure of solution quality after the optimization task.

SPO[1]

For a Combinatorial Problem :

 $v^*(\theta) \equiv \arg\min_v f(v,\theta) \ s.t. \ C(v,\theta)$

The task-loss is : $regret(\theta, \hat{\theta}) \equiv f(v^*(\hat{\theta}), \theta) - f(v^*(\theta), \theta)$.

If $regret(\theta, \hat{\theta})$ is directly used as a task-loss, *differentiate through argmin* for backpropagation. For a discrete output, the argmin is a *piecewise constant* function and *non-differentiable*

SPO overcomes this by using a convex upperbound of the regret.

PO Algorithm

Challenge

To compute the subgradient, $v^*(2\hat{\theta} - \theta)$ must be solved repeatedly for each training instance

> High training time & computation-expensive

Relaxed Oracle

Solution A *weak* but fast yet accurate oracle For MIP, the *relaxed oracle* is a weak oracle

 $\omega \leftarrow \omega - \alpha * \nabla \mathcal{L} * \frac{\partial \hat{\theta}_u}{\partial \omega};$

until convergence; Algorithm: SGD implementation of SPO

Relaxed Oracle helps in reducing training time without compromising quality

Warmstart using Earlier basis

Instance	SPO-relax	SPO-relax with Warmstart
1	6.5 (1.5) sec	1.5 (0.2) sec
2	7 (1.5) sec	1 (0.2) sec
3	$10 \ (0.5) \ sec$	2.5 (0.1) sec

Table 1: Average and SD of per epoch runtime with and without warmstarting

Warmstarting the solver from basis is an effective strategy to speed up training

Comparison with Decision-Focused Learning [2]

Large Scale Problem Instances

	Two-stage Approach				SPO-relax		
Hard Instances (200 tasks on 10 machines)	$2 \ epochs$	4 epochs	6 epochs	8 epochs	2 hour	4 hour	6 hour
instance I	90,769	$88,\!952$	$86,\!059$	$86,\!464$	$72,\!662$	$74,\!572$	79,990
instance II	$128,\!067$	$124,\!450$	$124,\!280$	$123,\!738$	$120,\!800$	$110,\!944$	$114,\!800$
instance III	129,761	$128,\!400$	$122,\!956$	$119,\!000$	$108,\!748$	$102,\!203$	$112,\!970$
instance IV	$135,\!398$	$132,\!366$	$132,\!167$	$126,\!755$	$109,\!694$	$99,\!657$	$97,\!351$
instance V	$122,\!310$	$120,\!949$	$122,\!116$	$123,\!443$	$118,\!946$	$116,\!960$	$118,\!460$

Table 2: Relaxed regret on hard ICON challenge[3] instances

SPO outperforms the two-stage approach on hard combinatorial problem instances even if it runs for limited epochs

Contribution

• We propose an *end-to-end training and optimize* approach applicable to *large-scale combinato-*

Decision-Focused Learning computes the gradient using a differentiable QP solver

instance-1 instance-2 instance-3

SPO provides solution equal to or better than the Decision Focused QP

- rial problem instances.
- We show a *relaxed oracle* is good enough for computing SPO subgradient.

• We show warmstarting using the basis of earlier solutions is effective to speedup training.

References

- Adam N Elmachtoub and Paul Grigas. Smart "predict, then optimize".
- Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization. In AAAI-19.
- CSPLib problem 059: Energy-cost aware scheduling. http://www.csplib.org/Problems/prob059. |3|
- Emir Demirović, Peter J. Stuckey, James Bailey, Jeffrey Chan, Chris Leckie, Kotagiri Ramamohanarao, and Tias Guns. An investigation into prediction + optimisation for the knapsack problem. In *CPAIOR-19*.