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Challenge

For a Combinatorial Problem :

To compute the subgradient, v* (20 — 0) must be
solved repeatedly for each training instance

v*(0) = argmin,, f(v,0) s.t. C(v,0)

The task-loss is : regret(0,0) = f(v*(0),0) — f(v*(0),0) .
If regret(0,0) is directly used as a task-loss, differentiate through argmin for backpropagation.
For a discrete output, the argmin is a pzecewise constant function and non-differentiable

High training time &
computation-expensive

Relaxed Oracle

SPO overcomes this by using a convexr upperbound of the regret.

A weak but fast yet accurate oracle

For MIP, the relaxed oracle 1s a weak oracle

SPO framework

SPO Algorithm
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Relaxed Oracle helps in reducing train-
ing time without compromising quality

Training by SPO

Algorithm: SGD implementation of SPO

Warmstart using Earlier basis Large Scale Problem Instances

. Two-stage Approach SPO-relax

Instance SPO-relax SP\?\)/'éiilqas)gaYg th Hard Instances
(200 tasks 2 epochs 4 epochs 6 epochs 8 epochs 2 hour 4 hour 6 hour

1 6.5 (1.5) sec 1.5 (0.2) sec on 10 machines)
instance I 90,769 88,952 86,059 86,464 72,662 74,572 79,990
E 7 (1.5) sec 1 (0.2) sec instance IT 128,067 124,450 124,280 123,738 | 120,800 110,944 114,800
3 10 (0.5) sec 2.5 (0.1) sec instance 111 129,761 128,400 122,956 119,000 108,748 102,203 112,970
instance IV 135,398 132,366 132,167 126,755 109,694 99,657 97,351
instance V 122,310 120,949 122,116 123,443 118,946 116,960 118,460

Table 1: Average and SD of per epoch runtime with

and without warmstarting Table 2: Relaxed regret on hard ICON challenge|3| instances

SPO outperforms the two-stage approach on hard combina-
torial problem instances even if it runs for limited epochs

Contribution

® We propose an end-to-end training and optimize approach applicable to large-scale combinato-
rial problem instances.

Warmstarting the solver from basis is an
effective strategy to speed up training

Comparison with Decision-
Focused Learning|2]

Decision-Focused Learning computes the gradi-
ent using a differentiable QP solver

W We show a relaxed oracle is good enough for computing SPO subgradient.

ey MSE-r : : : : : . . . .
wm OPTL = We show warmstarting using the basis of earlier solutions is eflfective to speedup training.
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