

Contribution

- We propose a *Differentiable Optimization layer* that methodically connects the derivatives used for optimisation and the gradients used for learning
- Specifically for Linear Programs (LP), we differentiate the *Homogeneous Self-dual* (HSD) embedding, the same formulation used for solving LP problems by interior point methods
- On the challenging problems of *prediction+optimization for Mixed Integer Linear Pro*gram, we show that this framework outperforms the state of the art

Prediction+Optimisation Setting

- With c being unknown but historic data $\{(\underline{z}, c)\}$ are available to predict c from \underline{z}
- Neural Net predictions $\hat{c} = m(\underline{z})$ will be fed to the optimizer.
- The aim is to generate predictions $x^*(\hat{c})$ to minimize the task loss $c^{\top}(x^*(\hat{c}) x^*(c))$

Challenges

- For the backward pass the derivative of task loss: $c^{\top}(x^*(\hat{c}) x^*(c))$ must be computed
- Computing the derivative of $x^*(\hat{c})$ w.r.t. \hat{c} , i.e. $\frac{\partial}{\partial \hat{c}}x^*(\hat{c}) \Rightarrow argmin differentiation$

Differentiating the KKT condition

For an optimization problem: $\min \mathbf{f}(\mathbf{c}, \mathbf{x}) s.t. \mathbf{A}\mathbf{x} = \mathbf{b}; \mathbf{x} \ge \mathbf{0}$, the Lagrangian relaxation: $\mathbb{L}(x,y;c) = f(c,x) + y^{\top}(b-Ax)$; dual variable: y

And the KKT conditions are:

$$f_x(c, x) - A^\top y = 0$$
$$Ax - b = 0$$

Implicit differentiation of Eq. (2) w.r.t. c yields:

$$\begin{bmatrix} f_{cx}(c,x) \\ 0 \end{bmatrix} + \begin{bmatrix} f_{xx}(c,x) & -A^{\top} \\ A & 0 \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial c}x \\ \frac{\partial}{\partial c}y \end{bmatrix} = 0$$

Interior Point Solving for LP-based prediction+optimisation Jayanta Mandi, Tias Guns

- LP into a QP, and differentiate Eq. (3)

- The method can start from any point even from a point infeasible to the original LP.

(1)

(2)

(3)

Differentiating Homogeneous Self-dual embedding

- Instead of the KKT conditions, differentiate the HSD embedding

	KKT, log barrier			HSD, log barrier			
$\lambda \ / \ \lambda$ -cut-off	10^{-1}	10^{-3}	10^{-10}	10^{-1}	10^{-3}	10^{-10}	
Regret	14365	14958	21258	10774	14620	21594	

Table 1: Differentiating the HSD formulation is more efficient than differentiating the KKT condition

Comparison with the state of the art

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Two-stage		$QPTL^1$		$SPO^{2,3}$		HSD,log barrier	
MSE-loss 745 (7)796 (5)3516 (56) 2×10^9 (4×10^7)3327 (485)3955 (300)2975 (620) 1.6×10^7 (1×10^7)Regret13322 (1458)13590 (2021)13652 (325)13590 (288)11073 (895)12342 (1335) 10774 (1715)11406 (1238)		0-layer	1-layer	0-layer	1-layer	0-layer	1-layer	0-layer	1-layer
Regret1332213590136521359011073123421077411406(1458)(2021)(325)(288)(895)(1335)(1715)(1238)	MSE-loss	745 (7)	796 (5)	3516 (56)	2×10^9 (4 × 10 ⁷)	3327 (485)	3955 (300)	2975 (620)	1.6×10^7 (1 × 10 ⁷)
	Regret	13322 (1458)	13590 (2021)	13652 (325)	13590 (288)	11073 (895)	12342 (1335)	10774 (1715)	11406 (1238)

References

- AAAI-19.
- AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence, volume 34, pages 1603–1610, 2020.

• We stop solving in the forward pass when λ goes below a threshold value λ -cut-off Forward Pass

Backward Pass

KKT vs HSD

Table 2: Our approach is able to outperform the state of the art

References

[1] Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization. In

[2] Adam N Elmachtoub and Paul Grigas. Smart "predict, then optimize". arXiv preprint arXiv:1710.08005, 2017. [3] Jayanta Mandi, Tias Guns, Emir Demirovi, and Peter. J Stuckey. Smart predict-and-optimize for hard combinatorial optimization problems. In